Получить свежую информацию с сайта ФИПС
|
||||||||||||||||||||||||||
(54) КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ (57) Реферат: Изобретение относится к области химической промышленности, к каталитическим системам, которые могут использоваться, в частности, в реакциях окисления хлористого водорода в молекулярный хлор, оксихлорирования метана, для парциального окисления низших парафинов (C1-C4) до спиртов и альдегидов (оксигенатов). Изобретение может найти применение в процессах получения ценных химических продуктов и полупродуктов, а также при переработке разнообразных газообразных и жидких отходов. Описана каталитическая система для гетерогенных реакций, представляющая собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом Изобретение относится к области химической промышленности, к новым каталитическим системам, которые могут использоваться, в частности, в реакциях окисления хлористого водорода в молекулярный хлор, оксихлорирования метана, для парциального окисления низших парафинов (C1-C4) до спиртов и альдегидов (оксигенатов). Изобретение может найти применение в процессах получения ценных химических продуктов и полупродуктов, а также при переработке разнообразных газообразных и жидких отходов. Известна каталитическая система для гетерогенных реакций, представляющая собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом Недостатками известной каталитической системы являются отсутствие активности в процессе окисления хлористого водорода в молекулярный хлор, а также низкая селективность превращений в ряде реакций, например в процессах парциального окисления низших парафинов (C1-C4) до спиртов и альдегидов (оксигенатов) и оксихлорирования метана. Перед авторами ставилась задача разработать каталитическую систему для гетерогенных реакций, обладающую высокой активностью, стойкостью к дезактивации в процессе окисления хлористого водорода в молекулярный хлор и повышенной селективностью в процессах парциального окисления низших парафинов (C1-C4) до спиртов и альдегидов (оксигенатов). Поставленная задача решается тем, что в каталитической системе для гетерогенных реакций, представляющей собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом Технический эффект заявляемого изобретения заключается в более высокой активности каталитической системы и в повышенной стойкости к дезактивации в агрессивных средах в реакциях окисления, хлорирования и оксихлорирования, а также повышенной активности в процессе окисления хлористого водорода в молекулярный хлор и повышенной селективности в процессах парциального окисления низших парафинов (C1-С 4) до спиртов и альдегидов (оксигенатов) и оксихлорировании метана. Это происходит благодаря использованию каталитической системы, включающей активный элемент либо в виде MezOxHaly композита, либо в виде NwMezOxHaly композита, где элемент N выбран из группы, включающей щелочные, щелочноземельные элементы, либо водород, элемент Me выбран из следующей группы: Ru, либо Со, либо Fe, либо Mi, либо Rh, либо V, либо Сr, либо Мn, либо Zn, либо Сu, либо Аg, либо Аu, либо La, либо один элемент из группы лантаноидов; а элемент Hal — один из галогенов: фтор, хлор, бром, иод, нанесенные на высококремнеземистый волокнистый носитель с заявленным набором физико-химических и геометрических свойств. Как показывают ниже приведенные примеры использования заявляемой каталитической системы, оксид либо оксигалогенид металла, нанесенный на высококремнеземистый волокнистый носитель, обладает повышенной стойкостью к дезактивации в агрессивных средах в реакциях окисления, хлорирования и оксихлорирования, а также повышенной активностью в процессе окисления хлороводорода в молекулярный хлор, повышенной селективностью в процессах парциального окисления низших парафинов (C1-C4) до спиртов и альдегидов (оксигенатов) и оксихлорирования метана по сравнению с известной каталитической системой, в которой, по крайней мере, один активный элемент, выполненный с возможностью формирования заряженных либо металлических, либо биметаллических кластеров. Высококремнеземистый носитель данной предлагаемой каталитической системы, включающий 50,0-98,8 вес.% диоксида кремния, характеризуется набором следующих физико-химических свойств: — в инфракрасном спектре имеется полоса поглощения гидроксильных групп с волновым числом 3620-3650 см-1 и полушириной 65-75 см-1; — носитель имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SАr=0,5-30 м2/г и величину поверхности, измеренную методом щелочного титрования, SNа=5,0-150 м2/г, при этом соотношение SNa/SAr =5-50. Совокупность признаков высококремнеземистого носителя свидетельствует о его специфическом строении и дает возможность формирования на нем активных состояний наносимого компонента. Например, наличие в инфракрасном спектре полосы поглощения ОН групп в области волновых чисел 3620-3650 см-1 и малая полуширина этой полосы свидетельствуют о наличии в носителе значительного количества ОН групп, локализованных не на внешней поверхности, как для традиционных силикагелей, а в узких и достаточно однородных по геометрии полостях. Аналогичные полосы описаны в литературе для силикатных материалов, содержащих ОН группы в объеме глобул или в очень мелких порах (Айлер Р. Химия кремнезема. М.: Мир, 1982. Т.2. С.870. Чукин Г.Д, Апретова А.И., Сильверстова И.В. // Кинетика и катализ. 1994. Т.35. С.426). Кроме того, в данном изобретении заявляются большие различия в величинах удельной поверхности, измеряемой методом БЭТ по физической адсорбции аргона SAr=0,5-30 м2/г и методом Сирса по хемосорбции заряженных частиц — катионов натрия SNа=5,0-150 м 2/г (G.W.Sears // Anal. Chem. — 1956. — V.28. — Р.1981. Р. Айлер. Химия кремнезема. — М.: Мир, 1982. — Т.2. — С.480). Значительное превышение величины поверхности, измеряемой по хемосорбции натрия SNa, величины удельной поверхности, определяемой методом БЭТ по физической адсорбции аргона, SNа/S Ar=5-50, свидетельствует о наличии в волокнистом носителе активных центров доступных для хемосорбции заряженных частиц — катионов Na+ (диаметр ~1,4 Å) и ограниченно доступных для физической адсорбции молекул Аr. Наличие этих признаков может обусловливать формирование высокоактивных состояний наносимого MezOxHaly композита либо NwMezOxHal y композита, что в результате приводит к повышенной стойкости к дезактивации в агрессивных средах в реакциях окисления, хлорирования и оксихлорирования, а также к повышенной активности в процессе окисления хлористого водорода в молекулярный хлор, повышенной селективности в процессах парциального окисления низших парафинов (C1-C4) до спиртов и альдегидов (оксигенатов) и оксихлорирования метана по сравнению с известной каталитической системой, в которой, по крайней мере, один активный элемент, выполненный с возможностью формирования заряженных либо металлических, либо биметаллических кластеров. Высококремнеземистый волокнистый носитель содержит 50-98,8 вес.% SiO2 и, по крайней мере, один элемент, выбранный из группы, включающей щелочные, щелочноземельные, редкоземельные элементы, алюминий, молибден, титан, цирконий. Наличие в носителе заявляемых промоторов изменяет состав и строение ближайшего окружения наносимых активных элементов и соответственно может дополнительно влиять на их свойства: размер и электронное состояние композитов. Микроволокна высококремнеземистого носителя диаметром 5-20 мкм должны быть структурированы в виде нетканого либо прессованного материала типа ваты и войлока, или в виде нитей диаметром 0,5-5,0 мм, или в виде тканей из этих нитей с плетением типа сатин, полотно, сетка с ячейкой размером 0,5-5,0 мм. Такое геометрическое строение способствует улучшению тепло- и массообмена и может давать дополнительный вклад в увеличение активности и селективности. Кроме того, это значительно снижает гидравлическое сопротивление катализатора, что важно для уменьшения времени контакта а, следовательно, роста производительности процесса. В сочетании с вышеуказанными активными состояниями вводимого активного элемента это может обусловливать более высокую активность каталитической системы и ее повышенную стойкость к дезактивации в агрессивных средах в процессе окисления хлористого водорода в молекулярный хлор, в реакциях окисления, хлорирования и оксихлорирования, а также повышенную селективность в процессах парциального окисления низших парафинов (C1-С4) до спиртов и альдегидов (оксигенатов) и оксихлорирования метана. Каталитическая система, используемая в заявляемом изобретении, может быть приготовлена, например, пропиткой высококремнеземного волокнистого носителя с заявляемыми свойствами водными растворами солей активных элементов, с последующим удалением пропиточного раствора и термообработкой каталитической системы в воздухе, или в водороде, или в инертной атмосфере. Входящие в носитель модифицирующие элементы, выбранные из группы, включающей щелочные, щелочноземельные, редкоземельные элементы, алюминий, молибден, титан, цирконий, вводятся в волокнистый носитель либо на стадии приготовления носителя, либо непосредственно перед введением активных элементов. Примеры использования каталитической системы Пример 1 Окисление хлористого водорода в молекулярный хлор производят, пропуская газовую смесь, содержащую 15% (об.) хлористого водорода, 60% кислорода (остальное азот), при атмосферном давлении через слой катализатора. Катализатор представляет собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя, выполненную в виде прессованного материала типа ваты либо тканого материала и содержащего активный компонент, выполненный в виде NwMezO xHaly композита, где в качестве элемента Me выбран рутений в количестве 0,01 вес.% Ru, в качестве элемента N выбран калий в количестве 0,008 вес.%, в качестве элемента Hal выбран хлор в количестве 0,02 вес.% и кислород в количестве 0,0008 вес.%. При температуре 350°С и объемной скорости подачи реакционной смеси 750 час-1 достигается конверсия хлористого водорода 28%. Пример 2 Окисление хлористого водорода в молекулярный хлор производят, пропуская газовую смесь, содержащую 15% (об.) хлористого водорода, 60% кислорода (остальное азот), при атмосферном давлении через слой катализатора. Катализатор представляет собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя, выполненную в виде прессованного материала типа ваты либо тканого материала и содержащего активный компонент, выполненный в виде NwMezOxHaly композита, где в качестве элемента Me выбран рутений в количестве 0,01 вес.% Ru, в качестве элемента N выбран калий в количестве 0,008 вес.%, в качестве элемента Hal выбран хлор в количестве 0,02 вес.% и кислород в количестве 0,0008 вес.%. При температуре 250°С и объемной скорости подачи реакционной смеси 750 час -1 достигается конверсия хлористого водорода 11%. Пример 3 Окисление метана производят, пропуская газовую смесь, содержащую 90% (об.) метана, 10% кислорода, при атмосферном давлении и температуре 350°С через каталитическую систему. Катализатор представляет собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя, выполненную в виде прессованного материала типа ваты либо тканого материала и содержащего активный компонент, выполненный в виде MezOxHaly композита, где в качестве элемента Me выбран рутений в количестве 0,015 вес.% Ru, в качестве элемента Hal выбран хлор в количестве 0,016 вес.% и кислород в количестве 0,001 вес.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 час-1 достигается селективность образования метанола 46% при конверсии метана 6,3%. 1. Каталитическая система для гетерогенных реакций, представляющая собой геометрически структурированную систему, включающую микроволокна высококремнеземистого носителя диаметром 5-20 мкм, который характеризуется наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом v=3620-3650 см-1 и полушириной 65-75 см-1, имеет удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SAr=0,5-30 м2/г, имеет величину поверхности, измеренную методом щелочного титрования, SNa=5-150 м2/г при соотношении SNa/SAr=5-50, и по крайней мере один активный элемент, отличающаяся тем, что активный элемент выполнен либо в виде MezOxHaly композита, либо в виде NwMezOx Haly композита, при этом элемент N композита N wMezOxHaly выбран из группы, включающей щелочные, щелочноземельные элементы, либо водород, элемент Me композита NwMezOx Haly и композита MezOxHal y выбран из группы, включающей железо, кобальт, никель, рутений, родий, ванадий, хром, марганец, цинк, медь, серебро, золото, либо один элемент из группы элементов лантана и лантаноидов, а элемент Hal композита NwMezOx Haly и композита MezOxHal y является одним из галогенов: фтор, хлор, бром, иод. 2. Каталитическая система для гетерогенных реакций по п.1, отличающаяся тем, что микроволокна высококремнеземистого носителя структурированы в виде нетканого либо прессованного материала типа ваты и войлока, или в виде нитей диаметром 0,5-5,0 мм, или в виде тканей из нитей с плетением типа сатин, полотно, ажур с диаметром ячеек 0,5-5,0 мм. 3. Каталитическая система для гетерогенных реакций по п.1, отличающаяся тем, что высококремнеземистый носитель содержит 50-98,8% SiO2 и по крайней мере один элемент, выбранный из группы, включающей металлы: железо, алюминий, молибден, титан, цирконий, хром, марганец, щелочные, щелочноземельные и редкоземельные элементы. |